If Clothes Made the Man

relation ship

Some 40ish years ago I came up with a story line I called “If Clothes Made the Man”. The premise was that a variety of artificial, double-helix fibers are woven into a fabric and from that a suit is tailored. The fibers are made of conductors, semiconductors, fiber optics, etc. with a structure much like DNA and it makes up a fabric of criss crossing threads that is essentially an omni meta self -configuring deep learning supercomputer. Some of the fibers are photovoltaic and some thermovoltaic so the fabric powers itself from ambient light and heat. The fabric has a variety of sensory capabilities far beyond the human range…

Long story short, the clothes learn to tune into all the signals from the wearer’s brain and body and all the signals from the environment and the suit becomes an intelligent interface between the two. The clothes soon become a super intelligent AI with seamless communication with the wearer. The clothes also learn how to control the DNA and physiology of the wearer, thus “remaking the man”. Together the clothes and those who wear them become super beings and go on to save the world and stuff, though probably some go to the dark side, too.

I never wrote the story and probably never will, so if you or someone you know might like to run with it, be my guest. Just credit Poor Richard with the basic idea.

Note: The reason I like the idea of weaving threads rather than printing semiconductors on thin films is that threads of different functions might be manufactured separately then interwoven, rather than printing complex patterns involving multiple materials on films that might be less flexible and fault tolerant. Either might serve the same purpose and might support a similar cottage industry, but the the thread/fabric idea might be lower tech and warmer (pun intended). Rather than extruding or spinning exotic fibers directly out of exotic materials, a conventional commercial fiber of nylon, glass, carbon, etc. might be infused with various exotic materials like amorphous silicon, metals, etc.

The natural history of knowledge

Natural History

(Photo credit: Wikipedia)

Commenting on:

And Now A Word From Our Sponsor …

Does your dualism lose its flavor on the bedpost overnight?
Unblock your inquiry with a dose of Peirce’s Elixir Triadic❢

Inquiry Driven Systems : Are There Apps For That?

In which Jon Awbrey raises the subject of the “Relationship between emergent-evolved systems and engineered systems.”

That points toward what I like to call the “natural history” of cognition, inquiry, logic, mathematics, language, etc. We might learn things from the natural, sequential development of such faculties and systems that could be either prescriptive or proscriptive for modern engineering practice.

I like looking for the earliest and simplest instances of things. Unfortunately the early natural history of most things is largely unknown. Take the evolution of the triangle or the number three in human cognition, for example. But even in the absence of historical data we might gain something from thought experiments or inferences about what the evolutionary sequence might have been in the light of things we do know about the human bio-computer.

Incidentally, thinking about threes and triangles, the basic transistor (perhaps a fairly close man-made analogue of a primitive neuron or a even a bit of DNA) that we now “print” with exotic nano-particle ink is a thing with a tripartite configuration. I guess such three-part structure actually applies to most switches, many instances of which greatly predate biology.

Animation of the structure of a section of DNA...

Structure of a section of DNA. (Photo credit: Wikipedia)

And commenting on a related post on Jon’s blog, Inquiry into Inquiry, Definition and Determination : 10 :

“Suffice it to say that a sign endeavors to represent, in part at least, an Object, which is therefore in a sense the cause, or determinant, of the sign even if the sign represents its object falsely.” — Charles S. Peirce

Typically symbols or signs are objects of higher compression (or lower resolution or complexity) than the objects they represent, but in some cases the reverse may be true.

I think of knowledge as consisting of networks of associations. If each association has a probability and each network has a geometry, then the structure of knowledge isn’t much different from the structure of physical stuff. Perhaps we will find a sort of quantum mechanics or geometrodynamics of knowledge.

Presumably the brain uses a wide variety of relatively specialized algorithms and heuristics (evolved and learned) depending on the kinds of signs, objects or data types and structures involved in a task.

fractal Von_Koch_curve

(Photo credit: Wikipedia)

How useful Is fractal geometry for representing recursive networks of objects-associations?

A mirror of silver and glass makes no critical analysis of what it reflects, but we think that few (if any) reflections are perfect. When light reflected from objects in our field of vision enters the eye a series of additional reflections are created by our optical and visual systems. The eye and brain apply adaptive-corrective algorithms all along the way. Among these are associations with previously recorded and computed objects, signs, rules, etc.that provide context and some critical analysis — a comprehensive (in some degree) grasp. Many “leaps and grasps” have occurred before we are consciously aware of an image at all.

What we know or comprehend about something is largely (wholly?) based on comparisons and contrasts (positive and negative associations) with other stuff we already know. Following the development of knowledge backwards to its origins, the original vestige of prior knowledge presumably comes somehow from the DNA and possibly other materials of the fertilized embryonic germ cell and this is inherited by the first neuroblasts that go on to form the brain.

Contrasts and comparisons (associations) are fundamental operations of the biochemical machines that run up and down the DNA chains making DNA repairs, copying it, building proteins based on it, etc. At the biochemical level reflections (associations) typically come in the form of positively or negatively matching shapes and electromagnetic charges.

I think we agree that the geometry of the basic unit of association is triadic. I tend to think of it most often in terms of two nodes and a connecting line, the basic unit of a network; rather than as a triangle. A triangle, it seems, has more than three parts (3 sides + 3 vertices + 3 angles + an enclosed area = 10 parts — at least!).

Poor Richard

DNA Double Take

Genomic Mosaicism

Genomic Mosaicism

“…scientists are discovering that — to a surprising degree — we contain genetic multitudes. Not long ago, researchers had thought it was rare for the cells in a single healthy person to differ genetically in a significant way. But scientists are finding that it’s quite common for an individual to have multiple genomes. Some people, for example, have groups of cells with mutations that are not found in the rest of the body. Some have genomes that came from other people.”

via DNA Double Take – NYTimes.com.

[Chimerism and genomic mosaicism may be far more common then formerly suspected–perhaps even typical. There may be huge implications for biology, medicine and forensics–PR]

%d bloggers like this: